
NASA Technical Memorandum 110154

Reducing Neural Network Training Time
With Parallel Processing

James L. Rogers, Jr.

Langley Research Center, Hampton, Virginia

William J. LaMarsh II

Computer Sciences Corporation, Hampton, Virginia

(NASA-TM-IIOI54) REDUCING NEURAL

NETWORK TRAINING TIME WITH PARALLEL

PROCESSING (NASA. Langley Research

Center) 21 p

N95-24209

Unclas

03/61 00453%3

February 1995

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

REDUCING NEURAL NETWORK TRAINING TIME WITH
PARALLEL PROCESSING

James L. Rogers

NASA Langley Research Center

William J. LaMarsh II

Computer Sciences Corporation

ABSTRACT

Obtaining optimal solutions for engineering design problems is often

expensive because the process typically requires numerous iterations

involving analysis and optimization programs. Previous research has

shown that a near optimum solution can be obtained in less time by

simulating a slow, expensive analysis with a fast, inexpensive neural

network. A new approach has been developed to further reduce this

time. This approach decomposes a large neural network into many

smaller neural networks that can be trained in parallel. Guidelines

are developed to avoid some of the pitfalls when training smaller

neural networks in parallel. These guidelines allow the engineer: to

determine the number of nodes on the hidden layer of the smaller

neural networks; to choose the initial training weights; and to select a

network configuration that will capture the interactions among the

smaller neural networks. This paper presents results describing how

these guidelines are developed.

INTRODUCTION

Analysis programs used to solve engineering design problems are

often computationally expensive. Numerous iterations between the

analysis program and an optimization program are typically required

to obtain an optimal solution. This process can become prohibitive

because of the computer time required for convergence. Therefore,

any new techniques that could significantly reduce the required

computer time in solving a complex design problem would be
beneficial.

One promising new technique is the simulation of a slow, expensive

analysis program with a fast, inexpensive neural network. A

backpropagation neural network was selected for this simulation.
Backpropagation neural networks were originally introduced in 1969
(Bryson and Ho, 1969). Only a brief introduction to neural networks
is provided in this paper; other references can provide more
background if necessary (Jones and Hoskins, 1987; Lippmann, 1987).

Recently, engineers have applied neural networks to structural
mechanics problems (Rehak et al, 1989; VanLuchene and Roufei,
1990; Berke and Hajela, 1991; and Swift and Batill, 1991). For
example, Berke and Hajela (1991) found optimum designs of trusses
with a neural network. The input data consisted of lengths and
heights for the truss; the output data consisted of the optimized bar
areas and the total weight of the truss. After the neural network
was trained, new optimal truss designs were found by propagating
different sets of input data through the neural network. VanLuchene
and Roufei (1990) applied a neural network to simulate the
structural analysis of a simply supported rectangular plate. The
analysis predicted the location and magnitude of the maximum
moment. In their conclusions, the authors suggested additional study
in the use of neural networks to solve civil-engineering optimization
problems.

To address this issue, a new tool called NETS/PROSSS (Rogers and
LaMarsh, 1991), which couples a backpropagation neural network
called NETS (Baffes, 1989) to an optimization system called the
Programming System for Structural Synthesis (PROSSS) was
developed (Sobieszczanski-Sobieski and Bhat, 1979; Rogers et al,
1981; and Rogers, 1982). The PROSSS was developed in 1979 to
provide a system for coupling analysis and optimization and is used
for the reference optimization process for this project. Although this
system was designed to handle any type of analysis program, most of
the work to date has evolved around coupling a structural analysis
program with an optimization program. In NETS/PROSSS, the neural
network simulates the structural analysis program.

A trade-off must be considered in deciding whether to simulate
structural analysis with a neural network in an optimization process.
This trade-off centers around the amount of time spent in obtaining
the optimum design. First, the engineer estimates the time required
for a single analysis. The analysis portion of the optimization process
typically executes sequentially. Because the analyses required to
develop training data for the neural network are independent, they
can be executed in parallel if more than one computer is available.

2

Therefore, because of parallelization, the execution of analysis
programs to generate training data for neural networks may require
less time to generate the same amount of analysis results. Although
training the neural network accumulates time without yielding
analysis results; once a neural network has been trained, it yields
analysis results with an insignificant time penalty. At some point, a
decision must be made whether time should be spent training the
neural network to simulate the analysis program or simply executing
the reference optimization process with the analysis program.

From previous research (Rogers, 1994), guidelines have been
developed for designing and training a neural network to simulate a
structural analysis program in an optimization process. The previous
research is reviewed in the background section and the guidelines
are summarized there. By following these guidelines, the number of
analyses required to develop the training data and the time required
to train the neural network was reduced. The resulting neural
network proved to be faster than the reference optimization process
by providing a reasonable approximation of the analysis results and
achieving a near optimum design in less time. However, further
reductions in training time may be obtained by taking advantage of
parallel processing to develop the training data and to train the
neural network. After the background section, this paper presents
an approach by which a large neural network can be decomposed
into several smaller neural networks that can be trained in parallel.

BACKGROUND

In a previous research project (Rogers and LaMarsh, 1992),

NETS/PROSSS was applied to the optimization of a simple cantilever-

beam problem. The motivation for this project was to determine the

feasibility of using this new tool in an optimization process. The

NETS/PROSSS approach followed the same convergence path as

PROSSS in the optimization process; however, NETS/PROSSS

(including the training time for the neural network) converged in

approximately one-third the time required for PROSSS. These results

were encouraging: NETS/PROSSS is a feasible optimization tool, a

neural network can successfully simulate a structural analysis

program, and an optimum design can be achieved in less time.

Although this project was successful, a concern existed that the

finite-element model was too simple, which simplified this

simulation of a structural analysis program by a neural network. As

3

a result, a second project (Rogers, 1994) was designed in which the
complexity of the finite-element model was increased by adding a
support and moving the load from the end to the middle of the beam.
The placement of the design variables was changed, and the initial
design variables (heights) were halved. In the previous project, only
two methods were tried for selecting training data. For the second
project, two additional methods, one based on statistical selection and
the other on random selection, were also tested.

In addition, Carpenter and Barthelemy (1992) questioned whether
an underdetermined neural network could achieve an adequate
approximation. The number of "unknowns" in a neural network
depends on the number of weights, the number of hidden layers, and
the number of nodes on the hidden and output layers. The number
of "knowns" depends on the number of nodes in the output layer and
the number of training pairs. This yields the relation:

(output nodes * training pairs) = (input nodes * hidden nodes) +
(hidden nodes * output nodes) + hidden nodes + output nodes.

One hidden layer was deemed sufficient for this simulation.
Therefore, to reduce the time needed to design and train a neural
network for the adequate simulation of a structural analysis
program, two questions were addressed. What is the best way to
select training data and what is the appropriate number of nodes on
the hidden layer? A complete analysis must be executed to generate
one training pair; as a result, these questions must be answered
because they pertain to the number of training pairs required for an
adequate approximation of the design space.

The second project (Rogers, 1994) addressed these two questions by
trying four different methods for selecting training data. Three
neural networks, each with a different number of nodes on the
hidden layer, were trained with each of these four sets of training
pairs. The output from these 12 combinations were compared to a
reference optimization, and the best combination was selected for
further processing to determine whether this technique could yield
an optimal design in less time. All work was performed on a Sun
Sparc2 workstation, which requires 3 min. per analysis execution,
compared with the previous project in which the analysis was
executed on a Dec MicroVax and required 20 min. per execution.

4

Based on these results, the following guidelines were developed for
using neural networks to simulate structural analysis in the
optimization process. More testing is needed to determine if this
process is viable with other analysis programs.

1. Create a neural network with the sum of the nodes from the input
and output layers on the hidden layer.

2. Build a hypercube around the initial design and add points at the
upper and lower bounds of the design variables. For n design

variables, 2*n + 3 design combinations will result.

3. Perform analyses for the design combinations in step 2 to create

training pairs.

4. Train the neural network and save the neural network weights.

5. Run NETS/PROSSS to find an approximate optimum, start from the

initial design with the saved weights from step 4.

6. Build a hypercube around the approximate optimum design.

yields an additional 2*n + 1 design combinations.

This

7. Perform analyses for the design combinations in step 6 to create

additional training pairs.

8. Use both sets of training pairs (4*n + 4 total) and the saved

weights from step 4 to train the network, and again save the weights

from this training.

9. Execute NETS/PROSSS with the final design from step 5 as the

initial design and the saved weights from step 8 to improve the

design.

10. To check the results, restart PROSSS with the final design from

step 9 as the initial design.

A total of 198 min. was required to reach an optimum solution with

the reference optimization and structural analyses. By following

these guidelines, the optimum solution was obtained in 159 minutes

with a neural network to simulate the structural analyses. In this

current project, an attempt is made to further reduce this time by

taking advantage of parallelization in developing the training pairs
and training the neural networks.

THE TEST PROBLEM

The test problem is to optimize the shape of a beam to minimize the

weight (the objective function) and satisfy stress constraints. A

beam with 3000 degrees-of-freedom (DOF) 1025 joints, and 640
three-dimensional solid brick elements is used for the finite-element

model (fig. 1).

Side view

Load

Support

Height 1 Height 2 Height 3 Height 4

--, 40 in "-

Height 5

640 solid brick elements
3000 DOF
40 stress constraints

1 objective function
(structural weight)

End view

Figure 1. Initial design for beam test problem.

The beam is 40 in. long, 4 in. wide and begins with a height of 4 in..

The problem has five design variables that determine the shape of

the beam by specifying the heights of the elements. Each design

variable controls the height of a block of 160 elements. Forty

cumulative stress constraints (Barthelemy and Riley, 1988) exist, one

6

for each of 40 stations (16 elements per station) along the beam. The
beam is made of a material with a modulus of elasticity of 35.9"106

psi, a weight per unit volume of 0.283 lb/in 3 , and an allowable

stress of 150"103 psi. A total load of 10,000 lb is applied in the z

direction and distributed at the 25 joints in the section at the middle

of the beam (for details see Rogers and LaMarsh, 1992). A support

exists at the end of the beam.

REFERENCE OPTIMIZATION PROCESS

The PROSSS iterates between the structural analysis program and the

optimizer. Based on current design variables, the structural analysis

program computes the stresses (which are converted into

constraints) and the objective function (weight); the optimizer uses

the current design variables, the stress constraints, and the objective

function to arrive at a new design (updated design variables). This

iterative process continues until it converges to an optimum design

(fig. 2). Convergence usually means that the objective function has

not changed more than some given tolerance within the last three

optimization cycles.

Several options are available in PROSSS to accomplish the

optimization process. Because the objective function for this problem

is linear and no analytical gradients are available, the PROSSS option

with a piecewise linear analysis in which the gradients are computed

by finite differencing that is external to the optimizer is selected.

This option requires six structural analyses to be executed in each

optimization cycle; each analysis requiring about 3 min. of computing
time.

For the initial design, all design variables are set at 4 in.. The

reference optimization process requires 198 min. and 11 cycles to

converge; each cycle (6 analyses) requires 18 min. of computing time.

For each of the first 5 cycles, the design variables are limited to a

maximum change of 30 percent (move limits of 30 percent) to speed

up convergence. The maximum change is decreased to 5 percent for

the last 6 cycles.

7

Final design

I Load
- 1.01

_ Support

Design variable 1 - 2.53
Design variable 2 - 0.65
Design variable 3- 3.20
Design variable 4 - 2.18

Objective function = 88.30

Active constraints
6, 7, 25, 28, 29, 30, 32

Figure 2. Final design of beam test problem (exaggerated vertical

scale).

NEURAL NETWORK OPTIMIZATION PROCESS

A flowchart of the entire optimization system (in general terms) in

which a neural network is used to simulate an analysis program is

shown in figure 3. A training pair is a set of known input data (in

this case the design variables) with the known output results (values

of the constraints and the objective function). Several sets of design

variables are chosen to represent the design space. To determine the

output results for a given set of inputs, the structural analysis

program must be executed for each set to create the training data for

the neural network. Both the input and output data in the training

pairs must be scaled. The neural network is trained by processing

the training pairs through NETS to determine the weights that

represent a relationship between the input and the output data.

These weights are saved after they have been computed. New input

data can now be propagated through the neural network and used
with the weights obtained from the training to approximate new
output data.

The weights, along with the initial design variables, are input to
NETS/PROSSS, which iterates between NETS and the optimizer. NETS
simulates the structural analysis by computing the objective function
and the stress constraints from the design variables and the set of
weights; the optimizer then uses this data to compute a new set of
design variables. The iteration continues until convergence to a near
optimal design, based on a predefined convergence criterion, is
realized. This revised set of design variables can serve as an initial
design in PROSSS that iterates between the structural analysis
program and the optimizer until a final optimal design is obtained.

Analyses

Scale

Training

Neural Weights
network

Reference
optimization

Initial desic
variables

I Analysis

I Optimizer

Revised desk Neural
variables network

Optimizer

I _w{ Finaldesign _ Neural network
optimization

Figure 3. Optimization process with neural network simulation.

DECOMPOSING THE NEURAL NETWORK

In this paper, a large neural network is decomposed into many

smaller, independent neural networks that can be trained in parallel.

9

Parallel training was performed on different workstations rather
than a multiprocessor computer. The first step was to determine the
number of nodes on the hidden layer of the smaller neural networks.
Then, several methods for choosing the initial training weights were
tested. Finally, a different network configuration was tested to
capture the interactions among the smaller networks. Results are
presented to indicate those methods that were successful and those
that were not. From these results, additional guidelines are
developed to avoid some of the pitfalls in training neural networks to
simulate structural analysis in an optimization process.

Hidden-Layer Nodes

The original network had a 5-46-41 configuration representing 5

design variables as input, 40 stress constraints and an objective

function as output, and 46 nodes on the hidden layer. This network

was decomposed into 41 smaller neural networks: 1 for each of the

40 constraints and 1 for the objective function (the output nodes).

Each neural network had 5 input nodes representing the design

variables. The number of nodes to be placed on the hidden layer had

to be determined.

The first choice was a 5-6-1 configuration. Seven networks were

trained to either a root mean square (RMS) error of 0.001 or 100,000

cycles (an arbitrarily chosen cutoff point), whichever occurred first.

All networks had 24 training pairs developed from the guidelines

presented above. The results are shown in figure 4.

t6
t,.)

E
.w

1200
I

1000 ÷

800 _-

600

400

200

0 _ _

1 2 3 4

Network

5 6 7

5-6-1

•-0-- 5-12-1

5-18-1

Figure 4. Training times for neural network configurations.

10

Networks 1, 2, and 3 used training data from the objective function,
and constraints 1 and 2 respectively; random weights were used as
the starting point. Constraints 1 and 2 were arbitrarily selected for
training. After training, the 3 sets of weights were saved.

Next, networks 4 and 5 used training data representing constraints 1
and 2 respectively. To determine if the training time might be
reduced by using consistent starting weights, these two networks
were trained beginning with the weights saved from training the
objective function (network 1). These trained sets of weights were
also saved.

Finally, networks 6 and 7 used training data representing constraint
2. To determine if starting with weights from a constraint network
might reduce training time even more, these two networks were
trained beginning with the weights saved from the trainings of the
constraint 1 network (networks 2 and 4). Three of the 5-6-1
networks (networks 4, 5, and 7) did not train to an RMS of 0.001
within 100,000 cycles.

Next, a 5-12-1 configuration was trained with the same procedures
as before. All networks trained within 100,000 cycles (0.019
sec/cycle) and in less overall time than the 5-6-1 configuration. For
comparison, the 5-46-41 configuration takes 0.368 sec/cycle for 24
training pairs.

Finally, a 5-18-1 configuration was trained; a law of diminishing
returns appears to exist. Although each network was trained in less
than 100,000 cycles (0.027 sec/cycle), the overall time was worse
than for the 5-12-1 network.

The original relation between "knowns" and "unknowns":

(output nodes * training pairs) = (input nodes * hidden nodes) +
(hidden nodes * output nodes) + hidden nodes + output nodes

can be rearranged to determine the number of hidden nodes.

hidden nodes = (output nodes * (training pairs
output nodes + 1).

1))/(input nodes +

Much of the complexity of the problem has been reduced by
decomposing the large neural network into many smaller neural

11

networks with a single output node. Therefore the relation may be
rewritten as:

hidden nodes = (training pairs
problem.

1)/(input nodes + 2) = 3.29 for this

But this relation does not hold for our current problem which
requires 12 nodes on the hidden layer to train properly. A new
factor is needed because of the decomposition. Thus the relation is
modified to be:

hidden nodes = factor * ((training pairs - 1)/(input nodes + 2)).

By solving using data from the current network, the factor is found
to be approximately (4/output nodes). This relation can be used as a
good guess to determine the number of nodes on the hidden layer.
More testing is required to determine the generality of this relation.

The 5-12-1 network was selected for more testing.

Training the Neural Network

Now that the training pairs have been created and the neural

network configuration defined, the next question that must be

resolved is how to train the network in terms of initial weights. Five

different methods were tried because a good set of initial starting

weights can decrease training time significantly.

(1) For the first method, the network for constraint 1 was trained

using random starting weights. The weights from this network were

then used as the starting point to determine the weights in the other

39 constraint networks in parallel.

(2) For the second method, the network for the objective function

was trained using random starting weights. The weights from this

network were then used as the starting point to determine the

weights for the 40 constraint networks in parallel. This method was

chosen to determine if the objective function would produce weights

that model the entire model and, therefore, produce good starting

points to train the constraints in parallel.

(3) For the third method, the constraint networks were trained using

the weights from the previous constraint network as the starting

12

point. The network for constraint 1 was trained by starting with

random weights, the network for constraint 2 was trained by starting

with the weights saved from the network for constraint 1, and so on.

This method takes advantage of the engineer's knowledge about the

problem but loses the advantage of parallel training.

(4) The fourth method began training of all networks with random

weights. Starting with random weights would yield different times

for each training, therefore this is just a representative time for the

method. This method also has the advantage of parallel training.

(5) The fifth method incorporated parallel training with the

engineer's knowledge of the problem. The model was divided into 4

sections. A network for a constraint toward the middle of each

section was trained by starting with random weights. The other 9

constraint networks were trained by starting with the weights of the

network already trained in that section.

The time required to train each network with the 5 different

methods is shown in figure 5.

sso T
3OO +

ei 250
t-

T: 200

E 150
.D

1--
lOO

50

0
Method 1 Method 2 Method 3 Method 4 Method 5

Figure 5. Training times for different methods of selecting starting

weights.

When compared against the reference optimization time of 198 min.,

the figure shows that methods 1, 4, and 5 took too long to train: 304,

215, and 191 min. respectively. However, if they could be trained in

parallel, this time could be reduced significantly. Although method 3

takes the shortest time to train (103 min.), it cannot take advantage

of parallelization. Method 2 is only slightly slower (107 min.) than

13

method 3; however the networks can be trained in parallel which

would reduce this time significantly. The choice of method 2 over

method 4 (random weights) also provides consistency in training
times.

Therefore, the weights from method 2 were chosen to test with

NETS/PROSSS, which was modified to handle data to and from more

than one neural network. The design variables were not close to

those found in the reference run; and after restarting with PROSSS, it

was found that the approximation was not acceptable. Although the

use of the objective function weights helped to train the constraint

networks faster, a portion of the problem interactions was lost in the

decoupling into separate networks.

Capturing Neural Network Interactions

A different network configuration was created to determine if the

interactions among the smaller neural networks could be retained.

Instead of a separate network for the objective function, the

objective function was added as an output for each of the 40
constraint networks. This resulted in a 5-10-2 network

configuration with 40 different networks. The number of nodes (10)

on the hidden layer was determined from the relation:

hidden nodes = ((4/output nodes) * output nodes * (training pairs

1))/(input nodes + output nodes + 1).

This yields approximately the same number of unknowns as the 5-

12-1 network. The following steps were used to train and test this

configuration.

(a) The 13 training pairs from the hypercube built around the initial

design were used to train the 40 networks. This took about 22 min.;

however, this step could have been accomplished in parallel. The

maximum training time for a single network was less than 2 min.

The weights were saved; and NETS/PROSSS was executed with this

configuration to obtain an approximate design.

(b) A new, large hypercube was built around the approximate

design from step (a), and 11 additional training pairs were

developed. The 40 neural networks were then retrained with 24

training pairs. The retraining, starting with the weights saved from

14

step (a), took 519 min. (weights were again saved). The maximum

training time for a network was approximately 30 min.

(c) Training pairs were developed the same as in (b). The 40 neural

networks were then retrained with 24 training pairs. The retraining,

starting with random weights, took 448 min. (weights were again

saved). This indicates that the "knowledge" from the previous

training with 13 training pairs did not save time in training even

though the 13 training pairs make up part of the 24 training pairs

used here. The maximum training time for a network was about 30

min. As before, this training could be done in parallel to reduce the

time.

(d) A 5-46-41 neural network was trained with these 24 training

pairs to compare results. Weights were again saved.

(e) The NETS/PROSSS was executed with each of these 3 sets (from

steps b, c, and d) of saved weights, and PROSSS was restarted from

the approximate designs with move limits of 30 percent and run for

5 iterations. The approximate designs from NETS/PROSSS are shown

in figure 6.

3.50 i
3.00

2.50
,.: • 5-10-2 (b)

.u

.E- 2.00 [] 5-10-2 (c)
in 5-46-41 (d)"$ 1.50

-1- • Reference
1.00

0.50

0.00

1 2 3 4 5

Design variables

Figure 6. Comparison of design variables.

In the figure, these design variable approximations do not appear to

be acceptable in comparison with the reference run. After PROSSS is

restarted for 5 cycles, the final designs are shown in figure 7.

15

0.50

0.00

• 5-10-2 (b)

[] 5-10-2 (c)

[] 5-46-41 (d)
• Reference

1 2 3 4 5

Design variables

Figure 7. Comparison of design variables after restart.

Although the designs in figure 7 and their respective objective

functions (88.85, 87.47, 88.41) are close to the reference (88.30),

significant differences exist in the constraints. Run (c) has 16 active

constraints and 7 violated constraints; run (d) has 18 active

constraints and 1 violated constraint.

Run (b) is the closest approximation to the reference run. The 7

active constraints for the reference run are 6, 7, 25, 28, 29, 30, and

32; the 4 active constraints for run (b) are 6, 25, 28, and 29. Neither

has any violated constraints. Again, method (b) which involves the

construction of 2 hypercubes yields the best results.

Therefore, if the most efficient use is made of parallelization in both

the analysis (all analyses executed at the same time on different

workstations) and the training (all networks trained at the same time

on different workstations), then, a reasonable optimal solution for

this problem could be found in a much shorter time (see below). The

times in the training steps represent the maximum time required to

train a single network at each step.

Analyses for initial design

Training in step (a)

Analyses for approximate design

Training steps (b) or (c)

3 min.

2 min.

3 min.

30 min.

Total time 38 min.

16

These results represent a significant improvement in time when

compared both with the reference time of 198 min. and the time

required for optimization using neural networks without

parallelization of 159 min.

CONCLUDING REMARKS

If a neural network is to be a viable simulator for structural analysis

in an optimization process, then a meaningful optimal design must be

obtained in less time. The time needed to create the training pairs

and to train the neural network must be significantly less than the

time required to execute the optimization process with analysis.

Guidelines have been developed to create a neural network that can

simulate structural analysis in the optimization process and obtain a

meaningful optimal design in less time. For the example selected, the

hypercube method for selecting the training pairs appears to give the

best approximation of the design space, particularly when it is used

twice. The first time, the hypercube represents the entire design

space around the initial design. The neural network is trained with

this data and an approximate optimum is found with NETS/PROSSS.

The second hypercube is built to represent the design space around

this approximate optimum. The neural network is then trained with

both sets of training pairs, and NETS/PROSSS is again executed to

find a better approximation of the optimal design.

The time required to obtain a reasonable optimal design can be

further reduced by decomposing a single, large neural network into

many smaller neural networks that can be trained in parallel. When

the smaller neural networks are configured, the number of nodes on

the hidden layer must be large enough to capture the essence of the

function. Based on the results from this project, it appears that a

slightly underdetermined neural network can provide an adequate

approximation of the results for a structural analysis program. A

good initial guess for the number of nodes on the hidden layer

appears to be given by:

hidden nodes = ((4/output nodes) * output nodes * (training pairs -

1))/(input nodes + output nodes + 1).

The output layer should contain a node that captures the interactions

among the various smaller neural networks; otherwise, these

interactions may be lost.

17

These guidelines, coupled with those from previous research, were
used to obtain a reasonable near optimal design for the test problem.
If verification is required, then the optimization process with
structural analysis can be restarted from this design and should
quickly converge to an optimum solution. The guidelines offered in
this paper are strictly applicable to the test problem. More general
applicability to other engineering design problems remains to be
demonstrated.

REFERENCES

Baffes, P. T. (1989). NETS 2.0 User's Guide. LSC-23366, NASA

Lyndon B. Johnson Space Center.

Barthelemy, J.-F. M., and Riley, M. F. (1988). Improved Multilevel

Optimization Approach for the Design of Complex Engineering

Systems, AIAA Journal, 26, No. (3), 353-360.

Berke, L., and Hajela, P. (1991). Applications of Neural Nets in

Structural Optimization, Presented at the NATO/AGARD Advanced

Study Institute on "Optimization of Large Structural Systems',

Berchtesgaden, Germany.

Bryson, A. E., and Ho, Y. C. (1969). Applied Optimal Control, Blaisdell.

Carpenter, W. C. and Barthelemy, J.-F. M. (1992). Comparison of

Polynomial Approximations and Artificial Neural nets for response

Surfaces in Engineering Optimization. Submitted to the 33rd SDM

Conference in Dallas, TX.

Jones, W. P., and Hoskins, J. (1987). Back-Propagation, BYTE

Magazine, October, 155-162.

Lippmann, R. P. (1987). An Introduction to Computing with Neural

Nets, IEEE ASSP Magazine, April, 4-22.

Mason, R. L., Gunst, R. F., and Hess J. L. (1989). Statistical Design and

Analysis of Experiments, John Wiley and Sons.

Rehak, D. R., Thewalt, C. R., and Doo, L.L. (1989). Neural

Network Approaches in Structural Mechanics Computations,

18

Computer Utilization in Structural Engineering, Ed. J. J. Nelson, Jr.,
ASCE Proceedings from Structural Congress.

Rogers, J. L. Jr., Sobieszczanski-Sobieski, J., and Bhat, R.B.

(1981). An Implementation of the Programming Structural Synthesis

System (PROSSS). NASA TM 83180.

Rogers, J. L. Jr. (1982). Combining Analysis with Optimization

Langley Research Center - An Evolutionary Process. "Proceedings

the Second International ASME Computers in Engineering

Conference, 3, 83-91, San Diego, CA.

at

of

Rogers, J. L. Jr., and LaMarsh, W. J. II. (1991). User's Guide to
NETS/PROSSS. NASA TM 104166.

Rogers, J. L., and LaMarsh W. J. II. (1992). Application of a Neural

Network to Simulate Analysis in an Optimization Process, Proceedings

of the Artificial Intelligence in Design '92 Conference, Pittsburgh, PA,

pp. 739-754.

Rogers, J. L. (1994). Simulating Structural Analysis with Neural

Network. ASCE Journal of Computing in Civil Engineering, Vol. 8, No.

2, April 1994, pp. 252-265.

Sobieszczanski-Sobieski, J., and Bhat, R. B. (1979) Adaptable

Structural Synthesis Using Advanced Analysis and Optimization

Coupled By a Computer Operating System, A Collection of Technical

Papers on Structures - AIAA / ASME / ASCE / AHS 20th SDM

Conference, 20-71, AIAA Paper No. 79- 0723.

Swift, R. A., and Batill, S.M. (1991). Application of Neural

Networks to Preliminary Design, A Collection of Technical Papers on

Structures AIAA /ASME/ASCE/AHS 32nd SDM Conference, AIAA

Paper No. 91-1038.

VanLuchene, R.D., and Roufei, S. (1990) Neural Networks in

Structural Engineering, Microcomputers in Civil Engineering 5, 207-
215.

19

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Pubic ropo_ng burden for this collection of information is ee(irrmtod.to !verage 1 hour per teaponm, including the time for reviewing inl_ructions. Imarching exi_ing data source s,

gstheriftg and ffla_tsimr_ the data needed, and cortt_ote!ittg 8trd reviewing the (_klct[on of klform_hce. Send _cojT,nlents re_ardcng this burclsn e_lmate o.r any o!he¢ a_ of this ^

_n of Informe(mn, k'ck._ling suggestions for reducing this burden, to Washington Headquarters SeNCeS, Dtr.lctorste 1or I nrormst_n u..I.._rs/!ons anoHe_ns,. 1_11_ uenerson uaws
Highway, SLste 1204, Arlington, VA 22202-4302, and to the Office of Managemenl and Budge(, Paperwork Reduction Project (0{04-01t_), wunmgton, L.K. _'U._.

1. AGENCY USE ONLY (Leave blank) J2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
I

J February 1995 Technical Memorandum
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Reducing Neural Network Training Time with Parallel Processing 505-63-50-12

s. AUTHOR(S)

James L. Rogers, Jr.

William J. LaMarsh II

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

NASA Langley Research Center

Hampton, Virginia 23681-0001

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-110154

11. SUPPLEMENTARY NOTES

12-,. DISTRIBUTION I AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category - 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Obtaining optimal solutions for engineering design problems is often expensive because the

process typically requires numerous iterations involving analysis and optimization programs.

Previous research has shown that a near optimum solution can be obtained in less time by

simulating a slow, expensive analysis with a fast, inexpensive neural network. A new

approach has been developed to further reduce this time. This approach decomposes a large

neural network into many smaller neural networks that can be trained in parallel. Guidelines

are developed to avoid some of the pitfalls when training smaller neural networks in parallel.

These guidelines allow the engineer: to determine the number of nodes on the hidden layer of

the smaller neural networks; to choose the initial training weights; and to select a network

configuration that will capture the interactions among the smaller neural networks. This

paper presents results describing how these guidelines are developed.

14. SUBJECTTERMS

Neural Network, Parallel Processing, Optimization

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

20
16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Pms_iped byANSI Std. Z39-18
298-102

